Building COVID-19 Vaccine Confidence in the Viral Hepatitis Community

An Expert Q&A with NVHR Patient and Provider Advocates

Housekeeping

Mute/Unmute to speak – bottom left
Please mute when you aren't speaking

Turn video on/off – bottom left
Please turn video off when slides are being shared

Please introduce yourself and put your questions in the chat as you think of them!

Leave meeting – bottom right

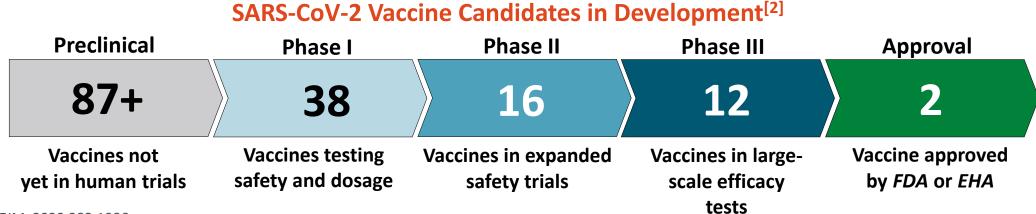
AGENDA

All About the COVID-19 Vaccine - Dr. Jay Kostman

Expert Q&A - Adrienne, Anthony, Ivette, Jacki, Jay, Peter

Resources and Closing

About the COVID-19 Vaccine



COMMON QUESTIONS WE WILL ADDRESS:

- How do we know the vaccine is effective and safe?
- Why should we trust the vaccine?
- Is there new technology being used and is that dangerous to me?
- What is an EUA and what does that mean for me?
- When and how long will I be protected?
- Will I still need to wear a mask?
- What are the expected side effects?
- What if I've already had COVID-19?
- Where should I look to get accurate information?

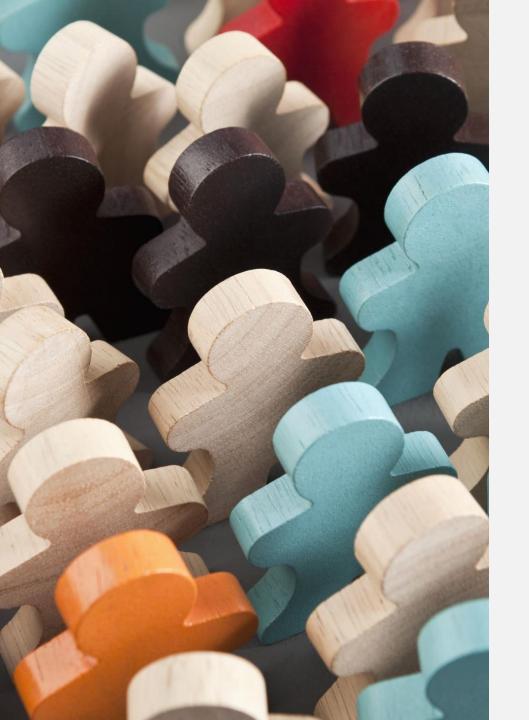
Vaccine Development Pathway

- Traditional vaccine development pathway^[1]
 - Target discovery/validation, preclinical stage, manufacturing development, clinical assay optimization: 3-8 yrs
 - Phase I (safety), phase II (safety/immunogenicity), phase III (safety/efficacy) clinical trials: 2-10 yrs
 - Regulatory review: 1-2 yrs

Slide credit: clinicaloptions.com

^{1.} Heaton. NEJM. 2020;383:1986.

^{2.} The New York Times. Coronavirus Vaccine Tracker. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html


HOW WAS THE VACCINE DEVELOPED SO QUICKLY?

Major reasons we were able to get these vaccines developed more quickly than usual include:

- Global effort with the world's leading scientists focused on a single task
- Nearly unlimited resources (money, knowledge, manpower, technology)
- A large pool of diverse adult volunteer trial participants

- An Emergency Use Authorization (EUA) for a vaccine is based on the need to use a vaccine quickly to save lives during a public health emergency
- EUA is a shorter process but no steps are skipped in the safety evaluation process
- The FDA will assess if the vaccine known and potential benefits outweigh the known and potential risks
- An EUA does NOT imply that the authorization was done too quickly or that the vaccine is not safe

WHAT IS AN EUA AND WHAT DOES THAT MEAN FOR ME?

WHY SHOULD I GET VACCINATED?

- Protect myself and my family
- Keep my clients and patients safe
- Help stop spread in the community
- Set the example for others, including residents, families, co-workers, and the community-at-large

Herd Immunity Definitions

Term	Definitions			
Herd immunity	 The indirect protection of susceptible individuals from infection when a sufficient portion of the population is immune 			
Herd immunity threshold	 The point at which the proportion of a population that is susceptible falls below the level needed for transmission 			
R_0	 The average number of secondary infections caused by a single infectious individual in a completely susceptible population 			

Herd Immunity Concept $R_0 = 4$ → Transmission ···· No transmission Susceptible Immune Fine. Vaccines. 2011;52:911.

Estimating Herd Immunity Thresholds for SARS-CoV-2

- Estimates of herd immunity threshold for SARS-CoV-2 use various assumptions of R_0 varying rates of heterogenous contact^[1,2]
- Various epidemiological models of the herd immunity threshold for SARS-CoV-2 currently range from 50% to 75% of the population^[1,2]
 - Assume that infection provides lasting protection against reinfection
 - This equates to 200 million people in the US and 5.6 billion people worldwide^[1]

THE FIRST TWO COVID-19 VACCINES

Both are mRNA vaccines

- Pfizer (BNT162b2)
- Moderna (mRNA-1273)

They Do NOT contain COVID-19 virus

mRNA COVID-19 Vaccines

- mRNA technology is new in vaccine production but is already being used in cancer treatment. It has been studied for more than ten years.
- COVID-19 mRNA vaccines give instructions for our cells to make a harmless piece that looks like the "spike protein." The spike protein is found on the surface of the COVID-19 virus.
- Our bodies recognize that this protein should not be there, so they build antibodies that will remember how to fight the virus that causes COVID-19 if we are infected in the future.

Can mRNA vaccine give me COVID-19? NO Can mRNA vaccine change my DNA? NO

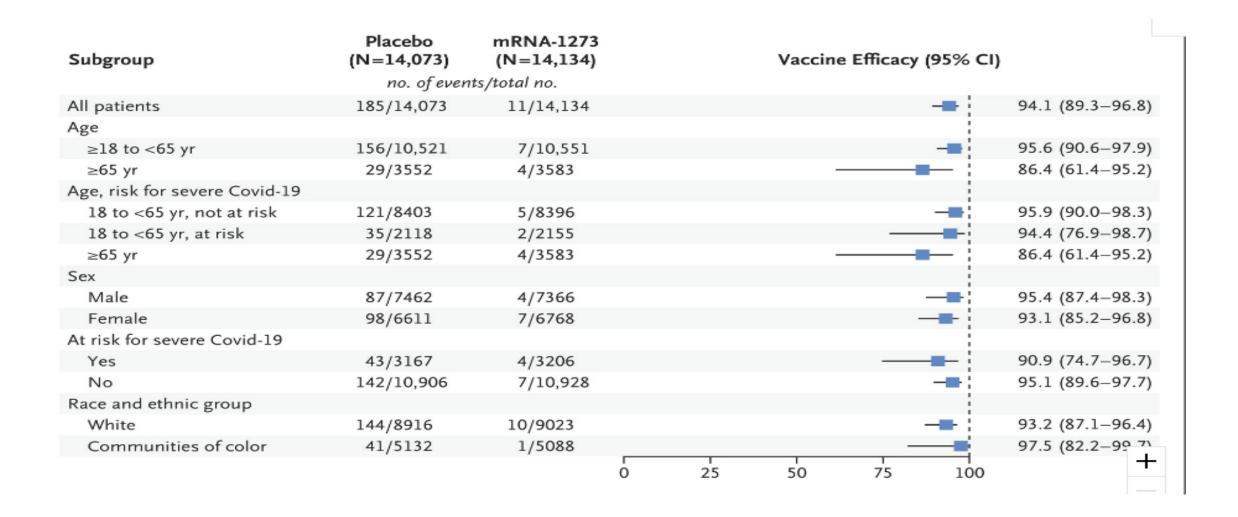
mRNA Vaccines Against SARS-CoV-2

Vaccine	Description	Phase (Total N)	Case Count, n	Primary Endpoint: Prevention of Symptomatic COVID-19	Additional Analyses Reported
BNT162b2 (Pfizer) ^[1]	Vaccinations on Day 1 and Day 21 in persons ≥ 12 yrs of age with nucleoside-modified mRNA (modRNA) encoding the membrane-bound full-length spike protein	II/III (43,661)*	170 (final)	95% 7 days after second dose (P < .0001)	 > 94% efficacy in adults > 65 yrs of age 9/10 severe cases occurred in placebo group
mRNA-1273 (Moderna) ^[2-4]	Vaccinations on Day 1 and Day 29 in persons ≥ 18 yrs of age with mRNA encoding a prefusion stabilized spike protein	III (30,000) [†]	95 (interim)	94.5% 14 days after second dose (P < .0001)	 11/11 severe cases occurred in placebo group

^{*41,135} had received second dose as of November 13, 2020. 42% of volunteers had diverse ethnic backgrounds; 41% were 56-85 yrs of age.

†Includes more than 7000 persons > 65 yrs of age and more than 5000 < 65 yrs of age with high-risk chronic diseases, such as diabetes, severe obesity, and cardiac disease. 37% of volunteers from racial and ethnic minorities.

WHO WAS
INCLUDED IN
THE COVID-19
VACCINE
TRIALS?


	Pfizer (BNT162b2)	Moderna (mRNA- 1273)
Number of people enrolled	Over 40,000	Over 25,000
Race and ethnicity of participants	Total 30% racially diverse 10% black, 13% Hispanic	37% racially diverse 10% black, 20% Hispanic/Latino
Older adults	45%	23%
	were 56-85 years	were >65 years

HOW EFFECTIVE
ARE THE COVID-19
VACCINES?

	Pfizer (BNT162b2)	Moderna (mRNA-1273)
Efficacy Overall	95% protection from having an infection	94.1% protection from having an infection

Similar efficacy with different race, ethnicity and age

Subgroup Effectiveness of COVID vaccine

WHAT
SHOULD I
EXPECT
WHEN I GET
THE
VACCINE?

 YOU MUST GET THE SECOND DOSE because the vaccine will not protect you if only get one dose

• It is important to get the SAME VACCINE as the first dose

J&J/JANSSEN VACCINE

- Adenovirus modified so it can not cause human disease
- Virus is modified to deliver a piece of DNA that will make the spike protein of COVID-19
- Trial conducted in South Africa, South America, Mexico and US
- Side effects similar and lasted 1-2 days
- Single dose vaccine, stored at normal refrigeration temperatures
- 66% effective in preventing moderate to severe/critical COVID-19 occurring at least 28 days after vaccination
- 85% effective in preventing severe/critical COVID-19 occurring at least 28 days after vaccination

Are the COVID-19 vaccines safe?

- Safety is the most important priority in vaccine approval
- Most adverse side effects occur within 6
 weeks of vaccine administration, and the
 FDA has required 8 weeks of safety
 monitoring
- FDA advises a minimum of 3,000 participants to assess safety. The current phase 3 trials have 30,000 to 50,000 participants. This really demonstrates how safety is a top priority for the FDA and the medical community.

WHAT'S IN THE MRNA VACCINE

- The mRNA—the "ticker tape" that leads to the production of the COVID-19 protein by your cells
- The lipid—Encases the RNA allowing it to get inside cells
- Salts—Like table salt—keep the acid level of the vaccine close to the acid level of the human body
- Sugars—Like table sugar—keeps the particles including the lipids and the mRNA together
- No mercury or other preservative

Important: warn about possible side effects

Will the vaccine make me sick?

- short-term discomfort : headache, muscle pains, fatigue, chills, fever and pain at injection site
- **1**-2 days
- Same symptoms as COVID-19 Emphasize that the vaccine cannot give you COVID-19
- May be more pronounced with second dose
- Normal and common
- It means your body is doing its job and making antibodies (IT IS A GOOD THING)
- MUST COME BACK FOR SECOND DOSE FOR THE VACCINE TO BE EFFECTIVE
- Must be the same vaccine as the first dose

MOST COMMON SIDE EFFECTS

BASED ON DATA FROM CLINICAL TRIAL OF PFIZER COVID-19 VACCINE

- Fever: 4-16%
- Fatigue 34-59%
- Headache: 25-52%
- Muscular pain: 14-37%

Side effects were more common after the second dose of the vaccine.

Reference: Data published in the New England Journal of Medicine:

https://www.nejm.org/doi/full/10.1056/NEJMoa2034577

THE VACCINE CANNOT GIVE YOU COVID-19!

- You can expect to have short-term discomfort: fatigue, headache, muscle pain, chills, fever and pain at injection site after vaccination
- These reactions will last for 24-48 hours and are typically more pronounced after the second dose
- Side effects mean your body is doing its job and making antibodies (IT IS A GOOD THING)
- These side effects are normal, common and expected

COVID-19 vaccine hesitation is real

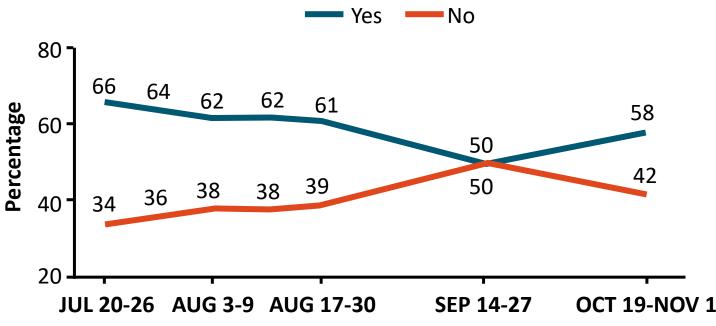
- Kreps et al found in his survey published in JAMA 10/20/20 that the most important factors for acceptance are efficacy, duration of protection and lower incidence of major side effects
- Other factors: EUA (Emergency Use Authorization) and a vaccine developed outside the United States.
- Specific staff concerns:
 - "being first"
 - Safety
 - Not being represented in the vaccine trials

JAMA Network Open. 2020;3(10):e2025594. doi:10.1001/jamanetworkopen.2020.25594

COVID-19 Hesitancy and Older Adults

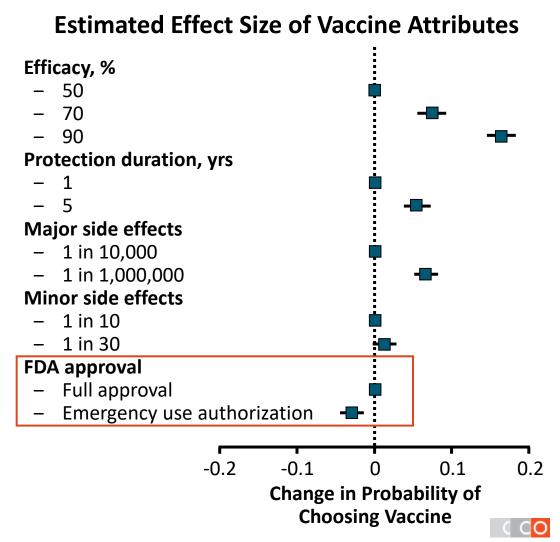
National Poll on Healthy Aging report, University of Michigan (November, 2020)

Views on Getting a COVID-19 Vaccine


AMONG ADULTS AGE 50-80

Malani P, Singer D, Solway E, Kirch M, Kullgren J. Older Adults' Perspectives on a COVID-19 Vaccine. University of Michigan National Pollon Healthy Aging. November 2020. Available at: http://hdl.handle.net/2027.42/163523

US Data: July to November 2020


"If an FDA-approved vaccine to prevent COVID-19 was available right now at no cost, would you take it?"

- Online survey of 2985 US adults; weighted sample to match US demographics
- Response was binary yesno; in Oct, 58% would take the vaccine
- This survey found vaccine intent increased between Sep and Oct

Factors That Affect COVID-19 Vaccine Hesitancy

- Vaccine characteristics: efficacy, duration, safety, side effects
- Concerns about the approval process: too fast, political influence
- Sources of information: healthcare providers, public health officials more trusted than politicians
- Demographics: on average, older people, black people, and women less willing to be vaccinated

How to Frame the Conversation

- Most Important: This is what we have been waiting for!
 - This is how we save lives, our own and everyone around us
- Meet people where they are
 - Everyone has questions and concerns
 - Listen and respond compassionately
 - Answer questions with respect and honesty

Why should we trust the COVID-19 vaccine?

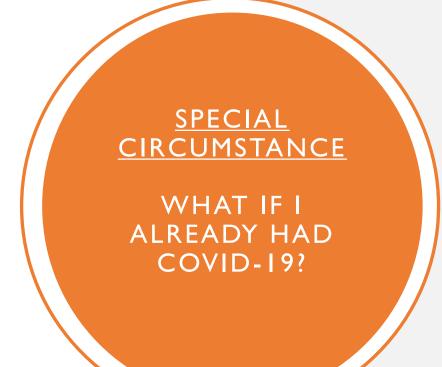
- The FDA is using the same standards that it has for decades
- There are no steps being "skipped"
- 2 advisory committees:
 - 1) The Vaccine and Related Biological Products Advisory Committee (VRBPAC) that advises the FDA
 - 2) The Advisory Committee on Immunization Practices (ACIP) that advises the CDC.

Vaccine Uptake: Recommendations

- Build trust with transparent and informative communication about vaccine safety and efficacy
 - To achieve herd immunity, the public needs vaccine literacy and confidence
- Provide culturally relevant vaccine education
 - Public health officials and healthcare providers are more trusted than politicians
- Until the clinical trials have published, data can be found on the FDA website
 - https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-december-10-2020-meeting-announcement
 - https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-december-17-2020-meeting-announcement

WHEN AND HOW LONG WILL I BE PROTECTED BY THE COVID-19 VACCINE?

- Pfizer and Moderna vaccines are 2 doses, 3-4 weeks apart
- Protection occurs I-2 weeks after the second dose
- We will most likely not know how long the vaccine will be protective once we receive it. We will know more as more time passes in the current research
- May need to have vaccine shots for COVID-19 on a regular basis (like the flu shot)



WILL I STILL NEED TO WEAR A MASK?

YES!

Similar to other vaccines, a large number of people in the community will need to get vaccinated before transmission drops enough to stop the use of masks

- It is safe to get the COVID-19 vaccine even if you have had COVID-19
- Even if you have had COVID-19, it is important to get vaccinated. It could give you longer or better protection against the disease
- Even if you have positive antibodies, you should get the COVID-19 vaccine

Work Group Proposed Interim Phase 1 Sequence

Phase1c
Adults with high -risk medical conditions
Adults 65+

Phase 1b Essential workers

(examples: Education Sector, Food & Agriculture, Utilities, Police, Firefighters, Corrections Officers, Transportation)

Phase 1a Health care personnel LTCF residents

Potential Consequences of Emerging Variants

- Faster spread due to increased transmissibility but no evidence of increased disease severity with currently identified variants^[1,2]
- Ability to evade detection by diagnostic tests^[1,2]
 - Less likely with PCR tests that assess multiple targets to detect virus
- Decreased susceptibility to therapeutic agents such as monoclonal antibodies remains unknown^[1]
- Evasion of natural or vaccine-induced immunity^[1-3]
 - Currently not enough information to assess potential impact on vaccine efficacy
 - Vaccination and natural infection induce polyclonal response so virus would need to likely accumulate many mutations to evade immunity
 - Some evidence that the E484K substitution in 501Y.V2 may confer resistance to immunity acquired from natural infection

Summary

- To date, reported safety and efficacy of COVID-19 vaccines in development have exceeded expectations
- Open questions include vaccine efficacy in special populations and durability of the vaccine immune response
- A major challenge going forward will be fair and efficient vaccine distribution to all persons in all countries
- Vaccine hesitancy is a threat to adequate vaccine uptake, which is necessary to control the COVID-19 pandemic
- No evidence, currently, that SARS-CoV-2 variants detected in isolates around the world affect disease severity or vaccine efficacy

COVID-19 Vaccines: Unanswered Questions

- Primary endpoint in mRNA vaccine trials was symptomatic illness, therefore not yet known if these effectively prevent transmission
- Duration of vaccine immunity still unknown
- Long-term safety data will require years of vaccination follow-up
- No data yet on efficacy or safety in children and pregnant women
- < 200 participants/trial developed symptomatic COVID-19, ie, too few to draw conclusions about efficacy in subpopulations
- SARS-CoV-2 genome appears relatively stable, but not known how virus will respond to selection pressure of mass vaccination

VACCINES ARE THE ONLY WAY TO CONTROL THE COVID-19 PANDEMIC

 Everyone has to do their part and get vaccinated to get back to a normal life

Resources for Building Vaccine Confidence

Resources for Building Vaccine Confidence

- AASLD Expert Panel Consensus Statement on COVID-19 Infection in Patients with Liver Disease
- Ad Council Common Questions and Answers
- Ad Council COVID-19 Vaccine Media Toolkit includes videos, banners, radio PSAs etc.
- Black Coalition Against COVID-19
- CDC Frequently Asked Questions
- <u>CDC Vaccine Finder</u> helpful for finding locations offering vaccines by zip code
- <u>CDC COVID-19 Pre-vaccination Screening Form</u> includes rationale behind each question on screening form
- <u>CDC Toolkit for Community-Based Organizations</u> includes key messages, posters, stickers, myths and facts
- <u>CDC V-Safe After Vaccination Health Checker</u> optional program to monitor side effects post-vaccination
- Community Education Group Presentation on COVID-19 Vaccine by Dr. Nab Dasgupta
- Crackdown Podcast on COVID-19 Vaccine for People Who Use Drugs
- Hepatitis B Foundation Statement on COVID-19 in Patients Living with Hepatitis B
- <u>Insider Cheatsheet for COVID Vaccine Safety by Dr. Nab Dasgupta</u>

Building COVID-19 Vaccine Confidence in the Viral Hepatitis Community

An Expert Q&A with NVHR Patient and Provider Advocates

